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Forced Time-Dependent Harmonic Oscillator
in a Static Magnetic Field: Exact Quantum
and Classical Solutions

Mai-Lin Liang %3 and Wen-Qing Zhang!
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Exactwave functions of the forced time-dependent two-dimensional harmonic oscillator
in a static magnetic field are derived by unitary transformation. The geometrical phase
induced by the driving force is the phase of the de Broglie wave associated with the
particle moving according to the classical equation. Extending the idea of the Heisenberg
correspondence principle to the time-dependent system, the exact classical solution -
obtained from quantum matrix elements.
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1. INTRODUCTION

The harmonic oscillator is a central topic both in classical mechanics and
quantum mechanics. A great many investigations have been done about the exact
wave functions of the time dependent harmonic oscillator and its modifications
(Brown, 1991; Feng and Wang, 1995; Ferredtaal, 2002; Gweon and Choi,
2003; Husimi, 1953; Kiset al, 1994; Laiet al,, 1996; Lewis, 1967; Lewis and
Riesenfeld, 1969; Liang and Wu, 2003; Lo, 1993a,b; Mizrahi, 1989; Pedrosa,
1997; Wanget al,, 2000; Yuet al,, 1998). Recently, Ferreiet al. (2002) obtained
the exact wave functions of a time-dependent harmonic oscillator in a static mag-
netic field. In this article, we deal with the problem that there is a time-dependent
external forceF(t). Besides the exact wave functions, we derive the exact clas-
sical solution by extending the Heisenberg correspondence principle to the time-
dependent systems (Greenberg and Klein, 1995; Huang, 1986; Morehead, 1996).
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For a time-independent system, the Heisenberg correspondence principle says that
the matrix elements of a physical quantity gives the coefficients of the Fourier ex-
pansions of the physical quantity in the classical limit (Greenberg and Klein, 1995;
Huang, 1986; Morehead, 1996). In another word, the quantum matrix element can
give the classical solution. It is interesting to note that such a phenomenon can be
used for time-dependent system (Liang and Wu, 2003). When both the exact wave
functions and the exact classical solution are obtained, the relationship between
the quantum and classical phases appears automatically.

This article is organized as follows. The next section gives the derivation of
the exact wave functions. The quantum matrix element and the classical limit are
in the third section and the final section is the conclusion.

2. THE EXACT WAVE FUNCTIONS

From the Hamiltonian of the time-dependent harmonic oscillator in a static
magnetic field (Ferreirat al., 2002) we easily get the Hamiltonian for the forced
system

H = Ho(t) — F(t)x
2 2
Holt) = Sy’ + 5meka + 5 MOREC + ) @

whereF(t) is the external forcep, and py are the momentum operatots; =
Xpx — Ypx is the angular momentum operator in the axatlirection, @, =
eBy(t)/M(t) is the cyclotron frequency of oscillation. The general frequengty
takes the form

Q2(t) = %wf + w?(t) 2)

For the undriven systerHy(t), the exact wave functions are (Ferredtaal,
2002)

Yo%, ¥, 1) = expli anm(t)]dnm(X, Y, t)

1 Moo 2
l 1t = = ) YRR 3
., = — e, £) xR i 2.0+ )| ©
wheren=0,1,2,... andm=0,+1,+2,.... Here, the variableg and¢ are

defined as; = x/(p+/h), &€ = y/(p+/h). The auxiliary equation for the function

p(t) is

(4)
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The functiongnm(n, &) satisfies

1[92 92 1, ,eBl,
[_E <a—;72 + @) + E(n + £ h ]%m(n. £)
- (N +1+p2?m> @am(n, €) ®)

whereN = 2n + |m|. The phase factor in (3) has the form

anm(t) = o) + B (1)

a(t) = / wc(f) ©6)

@hm®) = (N“)/ TEREE

In cylindrical coordinateg = Rcosg, & = Rsing, gnm(n, §) can be further writ-
ten aspnm(n, £) = enm(R)E™? /27 and Eq. (5) becomes

11 9 9 m2 1
[_ﬁa_R (RB_R) bR ] onm(R) = (N + Dgnm(R)  (7)

Clearly, (7) is the radial equation of a two-dimensional harmonic oscillator with
unit mass, frequency and Planck constant.

If there exists an external force, we shall show that the exact wave functions
are unitary transformations of (3). For the c&se- 0, one can easily prove

dL, oL,
dt ot
which means that there is another invariant, the angular momentum, besides the
Ermakov invariant = 1 (x, t) + I (y, t) (Ferreiraet al,, 2002). Really, the wave
function (3) is the eigenfunction df,. So, ¢nm(X, ¥, t) is the common eigen-
function of the invariantd ; and |, sincegnm(X, v, t) is the eigenfunction of the
invariantl too (Ferreiraet al, 2002). The conditionl[,, I] = 0 for L, and| to
have the common eigenfunctions can be proved by straightforward calculations.
If the external field is applied to the systemfor£ 0, the following operator
will be a new invariant

= (x = f1(1))(py — G2(t)) — (y — f2(t))(Px — u(1)) €)
Itis not difficult to show thatlL.,/dt = 0, with f;(t), gi(t), i = 1, 2 satisfying the
classical equations of motion

1
f, = % — Stz

1
+ itz HI =0 (8)
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1
O = —MQz f1 + F(t) — Ewcgz

. 1

f2 = % + EZD'C f1

. 2 1

P =-MQ“f, + Ewcgl (10)

which may be further cast into the equations for the displacemigfi}si = 1, 2
N VI ) ,
f1+ M fi1+ o f1 = —wcf2+ F(1)

. M. ,
fa+ Mf2+w2fz = —wf1 (11)
The operatoL/, is connected with the angular momentlumthrough the unitary

transformation

L, =U*L,U

_ fy . f O O
U= exp[| Yy Px + 1 ry py]exp[—| FX —i Fy (12)

where the following relations are used
UtxU =x—-f;, UpU=px—a1
UfyU=y—f,, U'pU=py—0a (13)

Similarly, the invariant transforms intd’ = U+ IU. After the unitary transfor-
mation, the common eigenfunctignm(x, y, t) ofthe invariantd. ;, andl becomes

u +¢nm(xa y1 t) (14)

which is the common eigenfunction of the new invariab{sand|1’. Hence, the
wave function for the forced system can be written in the form

Yam(X, Y, t) = expli B(t)] expli anm(t)]U Fnm(X, ¥, 1) (15)

wherep(t) is a new phase factor caused by the external force. The new phase is
calculated through (Lewis, 1967; Lewis and Riesenfeld, 1969; Mizrahi, 1989)

. . 1 .0
Olnm(t) + IB(t) = E <¢nm|U (' hﬁ - H) U+|¢nm> (16)
To calculate the phase, the relations (13) and the following averages are used

(GnmlX|pnm) = 0, {(Pnm|Y|énm) =0
(&nml PxIPnm) = 0,  (dnm| Pylénm) =0 (17)
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The phase is divided into two parts: the dynamical pa(t) and the geometrical
part By(t)

ﬂd(t)——/ {9121:/'9” Zoo(figo — fogn) + = MQZ(f2+f) le}dr
0

Bo(t) = ~ / { () S g 0 } dr (18)

The geometric part can be further written as

t
Bol) =~ [ AR + Lr)ea(e)

1 t
1 [ (@@dho + g@dro) 19)
0
The first term is integrible and can be removed by redefining the phase of
(f)nm(X, yv t)
Bom(X, ¥, 1) — e 7 (OB y 1) (20)

The second term in (19) is in fact the phase of the de Brolie wave of the particle
moving according to the classical equations (10) or (11).

3. MATRIX ELEMENTS AND THE CLASSICAL LIMIT

To simplify the expressions, now we use the Dirac notes. Following Liang
and Wu (2003), define a wave packet

lp(®) =Y [¥nm(t)) (22)
Nm
and a quantity
Onm(t) = Relp(®)| Olynm()) = ReY  (Ynm (1)IOYnm(t))  (22)
N'nv
where the quantum numbaris replaced byN throughN = 2n + |m|, O is the

operator in Schofidinger picture for a physical variable, “Re” means the real part
is taken. Using the Schndinger equation

., 0
Hivnm(®) = Th—¥am(®), Hle) = Ih Fle®) (23)
one can get the following evolution equation fOK m(t)
dOym(t 1
(th( ) Re{p(t)|-[O, Hl¥nn(t) (24)
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SettingO = X, y, px, andpy, we getequations similar to the classical Eq. (10)
for Xnm(t), Ynm(t), (Px)nm(t), and (py)nm(t). Below we demonstrate that in the
classical limit,Onm(t) agrees with the classical solution. Usi@g ,(t) to express
the quantity for the undriven system, the following relations can be derived

Xnm(t) = f1(t) + Xqm(®)
ym(t) = f2(t) + Y3m(t) (25)

Since fi(t),i = 1, 2 are the solutions of the classical Egs. (11) for the driven
system, if we can show thaf, ,(t) andy3 ,(t) agree with the classical solutions of
the undriven system, we will know thaf;(t) andynm(t) are consistent with the
classical solutions of the driven system. For mathematical simplicity, we discuss
the problem in cylindrical coordinate.

In cylindrical coordinatex = r cosg, y =r sing, for the undriven system
the classical equation of motion is

d [ df T

which may be rewritten in the form

%(Mf) — Mr¢? = —Mw?r —er¢By

d o (. Wc
qilvr(6-3)] =0 @)
The second equation has the solutipe: w./2 or
t
() = f w"é’)df (28)
0

Substituting (28) into the first equation of (27), we have

d

a(l\/|r)+|v|s22r =0 (29)
which admits the solution

t
1
= Cocosp), A0 = [ froydr
0 M()p?(r)
Now we calculate the quantity (22) for the undriven system. Recalling that
onm(n, £) = onm(R)E™? /4/27, it's not difficult to derive the following results by
using the wave function (3)

(30)

(CoS)m = cos/t WCT(T)dr, (SING)Rm = sin[t wcz(f)dr (31)
0 0
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Hence, (co®)?,, and (sinp)%, can be written in the form cas(t) and sing(t),

with ¢(t) the classical solution (28). In another word, for the azimuthal angle, the
guantity (22) and the classical solution are consistent with each other. Next let's
turn to the radial part. To calculate the quantity (22) for the radial coordinate, we
use the raising and lowering operators for the radial Eq. (7) €L&i., 1997)

d m d m
A—(m):R‘f‘d—R-f-E, A+(m):R—d—R+§

d m d m
B—(m)= R+d—R— ﬁ’ B+(m)= R——dR— ﬁ (32)

From these raising and lowering operators, the following relations can be proved
A_(m+ DA (MINmM) = (2N + 2m + 4)|Nm)
A (m—2DA_(M)Nm) = (2N + 2m)|Nm)
B_(m—1)B.(M)|Nm) = (2N — 2m + 4)|Nm)
B.(m+ 1)B_(m)|Nm) = (2N — 2m)|N m) (33)

where the Dirac notéNm) for pnym(R) has been used. By (33), one can find
that A_(m)|Nm) and|N — 1, m — 1) are both the eigenfunctions of the operator
A_(m)A,(m — 1) So, there exists the relation

A_(M)INm) = ay,IN—-1,m-1) (34)
with ay,, being a constant. Similar arguments give other relations
A (MINmM =af IN+1,m+1)
B_(M)[Nm) = by,IN —1,m+1)
Bi(M)INm) = by, IN+1,m—1) (35)
The constandy,, can be found in the following way
lagml® = (NmMI[A_(m)]* A_(m)|Nm)
= (Nm/A.(m— D)A_(m)[Nm)
=2N+2m (36)

where the relationaﬁ—?)+ = —diR — % is used for the cylindrical coordinate. Other

constants are also found by similar methods
ajim=+v2N+2m+4
bym = V2N — 2m
biim = v2N —2m+ 4 (37)
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From (32), the radial coordinate is expressed as the sum of the raising and lowering
operators

R= %[A,(m T+ A M-1)+B. (M—1)+B,(m+1)] (38)

Using (38) and the relations (34,35), we finally get
RAm(t) = Re >~ (¥ m (OIRIYR (1))

N'm’
= Re) (N'm|RINm) expf (anm — anm)]
N'm

1 B t dr
= Z(aN mi1 T m-1 + Bum_1 + Blimea) Cosf (39a)

0 M(2)p?(r)
Asr = /x2+y2 = p/hy/n?2 + £2 = p/AR, hence for the coordinate
rRm() = POVHR () (39h)

In the classical limit, the quantum numbers become very largeNidmer mh
becomes macroscopic scale, (39) reduces to the classical solution (30).

From (6) and (28,29), we automatically get relations between the quantum
and classical phases

#O = a0, O =~ ah® (40)

4. CONCLUSIONS

For the time-dependent driven harmonic oscillator in a static magnetic field,
it was shown that the geometrical phase induced by the driving force is the phase
of the de Brolie wave associated with the particle moving according to the classical
equation. Meanwhile, the exact classical solution is derived from quantum matrix
elements.
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