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Forced Time-Dependent Harmonic Oscillator
in a Static Magnetic Field: Exact Quantum
and Classical Solutions
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Exact wave functions of the forced time-dependent two-dimensional harmonic oscillator
in a static magnetic field are derived by unitary transformation. The geometrical phase
induced by the driving force is the phase of the de Broglie wave associated with the
particle moving according to the classical equation. Extending the idea of the Heisenberg
correspondence principle to the time-dependent system, the exact classical solution ˙ν

obtained from quantum matrix elements.
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1. INTRODUCTION

The harmonic oscillator is a central topic both in classical mechanics and
quantum mechanics. A great many investigations have been done about the exact
wave functions of the time dependent harmonic oscillator and its modifications
(Brown, 1991; Feng and Wang, 1995; Ferreiraet al., 2002; Gweon and Choi,
2003; Husimi, 1953; Kisset al., 1994; Laiet al., 1996; Lewis, 1967; Lewis and
Riesenfeld, 1969; Liang and Wu, 2003; Lo, 1993a,b; Mizrahi, 1989; Pedrosa,
1997; Wanget al., 2000; Yuet al., 1998). Recently, Ferreiraet al.(2002) obtained
the exact wave functions of a time-dependent harmonic oscillator in a static mag-
netic field. In this article, we deal with the problem that there is a time-dependent
external forceF(t). Besides the exact wave functions, we derive the exact clas-
sical solution by extending the Heisenberg correspondence principle to the time-
dependent systems (Greenberg and Klein, 1995; Huang, 1986; Morehead, 1996).
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For a time-independent system, the Heisenberg correspondence principle says that
the matrix elements of a physical quantity gives the coefficients of the Fourier ex-
pansions of the physical quantity in the classical limit (Greenberg and Klein, 1995;
Huang, 1986; Morehead, 1996). In another word, the quantum matrix element can
give the classical solution. It is interesting to note that such a phenomenon can be
used for time-dependent system (Liang and Wu, 2003). When both the exact wave
functions and the exact classical solution are obtained, the relationship between
the quantum and classical phases appears automatically.

This article is organized as follows. The next section gives the derivation of
the exact wave functions. The quantum matrix element and the classical limit are
in the third section and the final section is the conclusion.

2. THE EXACT WAVE FUNCTIONS

From the Hamiltonian of the time-dependent harmonic oscillator in a static
magnetic field (Ferreiraet al., 2002) we easily get the Hamiltonian for the forced
system

H = H0(t)− F(t)x

H0(t) = p2
x + p2

y

2M(t)
+ 1

2
$cLz+ 1

2
M(t)Ä(t)2(x2+ y2) (1)

whereF(t) is the external force,px and py are the momentum operators,Lz =
xpx − ypx is the angular momentum operator in the axialz direction,$c =
eB0(t)/M(t) is the cyclotron frequency of oscillation. The general frequencyÄ(t)
takes the form

Ä2(t) = 1

4
$ 2

c + ω2(t) (2)

For the undriven systemH0(t), the exact wave functions are (Ferreiraet al.,
2002)

ψ0
nm(x, y, t) = exp[iαnm(t)]φnm(x, y, t)

φnm(x, y, t) = 1

ρ
√

h
ϕnm(η, ξ ) exp

[
i

M ρ̇

2hρ
(x2+ y2)

]
(3)

wheren = 0, 1, 2,. . . andm= 0,±1,±2, . . . . Here, the variablesη andξ are
defined asη = x/(ρ

√
h), ξ = y/(ρ

√
h). The auxiliary equation for the function

ρ(t) is

ρ̈ + Ṁ ρ̇

M
+Ä2ρ = 1

M2ρ3
(4)
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The functionϕnm(η, ξ ) satisfies[
−1

2

(
∂2

∂η2
+ ∂2

∂ξ2

)
+ 1

2
(η2+ ξ2)+ ρ2 eB0Lz

2h

]
ϕnm(η, ξ )

=
(

N + 1+ ρ2 eB0

2
m

)
ϕnm(η, ξ ) (5)

whereN = 2n+ |m|. The phase factor in (3) has the form

αnm(t) = α(1)
nm(t)+ α(2)

nm(t)

α(1)
nm(t) = −m

∫ t

0

$c(τ )

2
dτ (6)

α(2)
nm(t) = −(N + 1)

∫ t

0

τ

M(τ )ρ2(τ )

In cylindrical coordinatesη = Rcosφ, ξ = Rsinφ, ϕnm(η, ξ ) can be further writ-
ten asϕnm(η, ξ ) = ϕNm(R)eimφ/

√
2π and Eq. (5) becomes[

−1

2

1

R

∂

∂R

(
R
∂

∂R

)
+ m2

2R2
+ 1

2
R2

]
ϕNm(R) = (N + 1)ϕNm(R) (7)

Clearly, (7) is the radial equation of a two-dimensional harmonic oscillator with
unit mass, frequency and Planck constant.

If there exists an external force, we shall show that the exact wave functions
are unitary transformations of (3). For the caseF = 0, one can easily prove

dLz

dt
= ∂Lz

∂t
+ 1

i h
[Lz, H ] = 0 (8)

which means that there is another invariant, the angular momentum, besides the
Ermakov invariantI = I (x, t)+ I (y, t) (Ferreiraet al., 2002). Really, the wave
function (3) is the eigenfunction ofLz. So,φnm(x, y, t) is the common eigen-
function of the invariantsLz and I , sinceφnm(x, y, t) is the eigenfunction of the
invariant I too (Ferreiraet al., 2002). The condition [Lz, I ] = 0 for Lz and I to
have the common eigenfunctions can be proved by straightforward calculations.

If the external field is applied to the system orF 6= 0, the following operator
will be a new invariant

L ′z = (x − f1(t))(py − g2(t))− (y− f2(t))(px − g1(t)) (9)

It is not difficult to show thatdL′z/dt = 0, with fi (t), gi (t), i = 1, 2 satisfying the
classical equations of motion

ḟ1 = g1

M
− 1

2
$c f2
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ġ1 = −MÄ2 f1+ F(t)− 1

2
$cg2

ḟ2 = g2

M
+ 1

2
$c f1

ġ2 = −MÄ2 f2+ 1

2
$cg1 (10)

which may be further cast into the equations for the displacementsfi (t), i = 1, 2

f̈1+ Ṁ

M
ḟ1+ ω2 f1 = −$c ḟ2+ F(t)

f̈2+ Ṁ

M
ḟ2+ ω2 f2 = −$c ḟ1 (11)

The operatorL ′z is connected with the angular momentumLz through the unitary
transformation

L ′z = U+LzU

U = exp

[
i

f1

h
px + i

f2

h
py

]
exp

[
−i

g1

h
x − i

g2

h
y

]
(12)

where the following relations are used

U+xU = x − f1, U+pxU = px − g1

U+yU = y− f2, U+pyU = py − g2 (13)

Similarly, the invariantI transforms intoI ′ = U+ IU . After the unitary transfor-
mation, the common eigenfunctionφnm(x, y, t) of the invariantsLz, andI becomes

U+φnm(x, y, t) (14)

which is the common eigenfunction of the new invariantsL ′z and I ′. Hence, the
wave function for the forced system can be written in the form

ψnm(x, y, t) = exp[iβ(t)] exp[iαnm(t)]U+φnm(x, y, t) (15)

whereβ(t) is a new phase factor caused by the external force. The new phase is
calculated through (Lewis, 1967; Lewis and Riesenfeld, 1969; Mizrahi, 1989)

α̇nm(t)+ β̇(t) = 1

h

〈
φnm|U

(
i h
∂

∂t
− H

)
U+|φnm

〉
(16)

To calculate the phase, the relations (13) and the following averages are used

〈φnm|x|φnm〉 = 0, 〈φnm|y|φnm〉 = 0

〈φnm|px|φnm〉 = 0, 〈φnm|py|φnm〉 = 0 (17)
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The phase is divided into two parts: the dynamical partβd(t) and the geometrical
partβg(t)

βd(t) = 1

h

∫ t

0

{
g2

1 + g2
2

2M
+ 1

2
$c( f1g2− f2g1)+ 1

2
MÄ2

(
f 2
1 + f 2

2

)− f1F

}
dτ

βg(t) = 1

h

∫ t

0

{
f1(τ )

dg1(τ )

dτ
+ f2(τ )

dg2(τ )

dτ

}
dτ (18)

The geometric part can be further written as

βg(t) = − 1

h

∫ t

0
d{ f1(τ )g1(τ )+ f2(τ )g2(τ )}

+ 1

h

∫ t

0
{g1(τ )d f1(τ )+ g2(τ )d f2(τ )} (19)

The first term is integrible and can be removed by redefining the phase of
φnm(x, y, t)

φnm(x, y, t)→ e−i 1
h ( f1g1+ f2g2)φnm(x, y, t) (20)

The second term in (19) is in fact the phase of the de Brolie wave of the particle
moving according to the classical equations (10) or (11).

3. MATRIX ELEMENTS AND THE CLASSICAL LIMIT

To simplify the expressions, now we use the Dirac notes. Following Liang
and Wu (2003), define a wave packet

|ϕ(t)〉 =
∑
Nm

|ψNm(t)〉 (21)

and a quantity

ONm(t) = Re〈ϕ(t)|O|ψNm(t)〉 = Re
∑
N ′m′
〈ψN ′m′ (t)|O|ψNm(t)〉 (22)

where the quantum numbern is replaced byN throughN = 2n+ |m|, O is the
operator in Schr¨ondinger picture for a physical variable, “Re” means the real part
is taken. Using the Schr¨ondinger equation

H |ψNm(t)〉 = i h
∂

∂t
|ψNm(t)〉, H |ϕ(t)〉 = i h

∂

∂t
|ϕ(t)〉 (23)

one can get the following evolution equation forONm(t)

dONm(t)

dt
= Re〈ϕ(t)| 1

i h
[O, H ]ψNm(t)〉 (24)
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SettingO = x, y, px, andpy, we get equations similar to the classical Eq. (10)
for xNm(t), yNm(t), (px)Nm(t), and (py)Nm(t). Below we demonstrate that in the
classical limit,ONm(t) agrees with the classical solution. UsingO0

Nm(t) to express
the quantity for the undriven system, the following relations can be derived

xNm(t) = f1(t)+ x0
Nm(t)

yNm(t) = f2(t)+ y0
Nm(t) (25)

Since fi (t), i = 1, 2 are the solutions of the classical Eqs. (11) for the driven
system, if we can show thatx0

Nm(t) andy0
Nm(t) agree with the classical solutions of

the undriven system, we will know thatxNm(t) andyNm(t) are consistent with the
classical solutions of the driven system. For mathematical simplicity, we discuss
the problem in cylindrical coordinate.

In cylindrical coordinatex = r cosφ, y = r sinφ, for the undriven system
the classical equation of motion is

d

dt

(
M

dEr
dt

)
= −Mω2(t)Er − e

dEr
dt
× EB0(t) (26)

which may be rewritten in the form

d

dt
(Mṙ )− Mr φ̇2 = −Mω2r − erφ̇B0

d

dt

[
Mr 2

(
φ̇ − $c

2

)]
= 0 (27)

The second equation has the solutionφ̇ = $c/2 or

φ(t) =
∫ t

0

$c(τ )

2
dτ (28)

Substituting (28) into the first equation of (27), we have

d

dt
(Mṙ )+ MÄ2r = 0 (29)

which admits the solution

r = Cρ(t) cosβ(t), β(t) =
∫ t

0

1

M(τ )ρ2(τ )
dτ (30)

Now we calculate the quantity (22) for the undriven system. Recalling that
ϕnm(η, ξ ) = ϕNm(R)eimφ/

√
2π , it’s not difficult to derive the following results by

using the wave function (3)

(cosφ)0
Nm = cos

∫ t

0

$c(τ )

2
dτ, (sinφ)0

Nm = sin
∫ t

0

$c(τ )

2
dτ (31)
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Hence, (cosφ)0
Nm and (sinφ)0

Nm can be written in the form cosφ(t) and sinφ(t),
with φ(t) the classical solution (28). In another word, for the azimuthal angle, the
quantity (22) and the classical solution are consistent with each other. Next let’s
turn to the radial part. To calculate the quantity (22) for the radial coordinate, we
use the raising and lowering operators for the radial Eq. (7) (Liuet al., 1997)

A−(m) = R+ d

d R
+ m

R
, A+(m) = R− d

d R
+ m

R

B−(m) = R+ d

d R
− m

R
, B+(m) = R− d

d R
− m

R
(32)

From these raising and lowering operators, the following relations can be proved

A−(m+ 1)A+(m)|Nm〉 = (2N + 2m+ 4)|Nm〉
A+(m− 1)A−(m)|Nm〉 = (2N + 2m)|Nm〉
B−(m− 1)B+(m)|Nm〉 = (2N − 2m+ 4)|Nm〉
B+(m+ 1)B−(m)|Nm〉 = (2N − 2m)|Nm〉 (33)

where the Dirac note|Nm〉 for ϕNm(R) has been used. By (33), one can find
that A−(m)|Nm〉 and|N − 1, m− 1〉 are both the eigenfunctions of the operator
A−(m)A+(m− 1) So, there exists the relation

A−(m)|Nm〉 = a−Nm|N − 1, m− 1〉 (34)

with a−Nm being a constant. Similar arguments give other relations

A+(m)|Nm〉 = a+Nm|N + 1, m+ 1〉
B−(m)|Nm〉 = b−Nm|N − 1, m+ 1〉
B+(m)|Nm〉 = b+Nm|N + 1, m− 1〉 (35)

The constanta−Nm can be found in the following way

|a−Nm|2 = 〈Nm|[ A−(m)]+A−(m)|Nm〉
= 〈Nm|A+(m− 1)A−(m)|Nm〉
= 2N + 2m (36)

where the relation (dd R)+ = − d
d R − 1

R is used for the cylindrical coordinate. Other
constants are also found by similar methods

a+Nm =
√

2N + 2m+ 4

b−Nm =
√

2N − 2m

b+Nm =
√

2N − 2m+ 4 (37)
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From (32), the radial coordinate is expressed as the sum of the raising and lowering
operators

R= 1

4
[ A−(m+ 1)+ A+(m− 1)+ B−(m− 1)+ B+(m+ 1)] (38)

Using (38) and the relations (34,35), we finally get

R0
Nm(t) = Re

∑
N ′m′

〈
ψ0

N ′m′ (t)|R|ψ0
Nm(t)

〉
= Re

∑
N ′m

〈N ′m|R|Nm〉 exp[i (αNm− αN ′m)]

= 1

4
(a−Nm+1+ a+Nm−1+ b−Nm−1+ b+Nm+1) cos

∫ t

0

dτ

M(τ )ρ2(τ )
(39a)

As r =
√

x2+ y2 = ρ√h
√
η2+ ξ2 = ρ√hR, hence for the coordinater

r 0
Nm(t) = ρ(t)

√
hR0

Nm(t) (39b)

In the classical limit, the quantum numbers become very large andNh or mh
becomes macroscopic scale, (39) reduces to the classical solution (30).

From (6) and (28,29), we automatically get relations between the quantum
and classical phases

φ(t) = − ∂

∂m
α

(1)
Nm(t), β(t) = − ∂

∂N
α

(2)
Nm(t) (40)

4. CONCLUSIONS

For the time-dependent driven harmonic oscillator in a static magnetic field,
it was shown that the geometrical phase induced by the driving force is the phase
of the de Brolie wave associated with the particle moving according to the classical
equation. Meanwhile, the exact classical solution is derived from quantum matrix
elements.
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